Maximum of Ideal Mixing Entropy

Shuanglin Chen

February 22, 2024

1 Weighted Arithmetic Mean and Geometric Mean Inequality

The weighted arithmetic mean and geometric mean inequality is given in the following theorem [1].

Theorem Let the sum of the positive numbers $w_{i}(i=1,2, \cdots, n)$ be equal to 1 . Then for arbitrary positive numbers $a_{i}(i=1,2, \cdots, n)$ we have the inequality

$$
\begin{equation*}
w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{n} a_{n} \geq a_{1}^{w_{1}} a_{2}^{w_{2}} \cdots a_{n}^{w_{n}} \tag{1}
\end{equation*}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Set $b_{i}=\frac{1}{a_{i}}(i=1,2, \cdots, n)$, Eq.(1) becomes

$$
\begin{equation*}
\frac{w_{1}}{b_{1}}+\frac{w_{2}}{b_{2}}+\cdots+\frac{w_{n}}{b_{n}} \geq\left(\frac{1}{b_{1}}\right)^{w_{1}}\left(\frac{1}{b_{2}}\right)^{w_{2}} \cdots\left(\frac{1}{b_{n}}\right)^{w_{n}} \tag{2}
\end{equation*}
$$

Set

$$
\begin{equation*}
w_{i}=\frac{b_{i}}{b_{1}+b_{2}+\cdots+b_{n}} \quad(i=1,2, \cdots, n) \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{w_{1}}{b_{1}}=\frac{w_{2}}{b_{2}}=\cdots=\frac{w_{n}}{b_{n}}=\frac{1}{b_{1}+b_{2}+\cdots+b_{n}} \tag{4}
\end{equation*}
$$

Substituting Eqs.(3) and (4) into Eq.(2), we obtain

$$
\begin{equation*}
\frac{n}{b_{1}+b_{2}+\cdots+b_{n}} \geq\left(\frac{1}{b_{1}}\right)^{\frac{b_{1}}{b_{1}+b_{2}+\cdots+b_{n}}}\left(\frac{1}{b_{2}}\right)^{\frac{b_{2}}{b_{1}+b_{2}+\cdots+b_{n}}} \cdots\left(\frac{1}{b_{n}}\right)^{\frac{b_{n}}{b_{1}+b_{2}+\cdots+b_{n}}} \tag{5}
\end{equation*}
$$

Switch both sides and raise both sides to the power $b_{1}+b_{2}+\cdots+b_{n}$, we have

$$
\begin{equation*}
\left(\frac{1}{b_{1}}\right)^{b_{1}}\left(\frac{1}{b_{2}}\right)^{b_{2}} \cdots\left(\frac{1}{b_{n}}\right)^{b_{n}} \leq\left(\frac{n}{b_{1}+b_{2}+\cdots+b_{n}}\right)^{b_{1}+b_{2}+\cdots+b_{n}} \tag{6}
\end{equation*}
$$

We write the opposite inequality for the reciprocals for above inequality,

$$
\begin{equation*}
b_{1}^{b_{1}} b_{2}^{b_{2}} \cdots b_{n}^{b_{n}} \geq\left(\frac{b_{1}+b_{2}+\cdots+b_{n}}{n}\right)^{b_{1}+b_{2}+\cdots+b_{n}} \tag{7}
\end{equation*}
$$

and the equality holds if and only if $b_{1}=b_{2}=\cdots=b_{n}$.

2 Ideal Mixing Entropy

For an n-component solution phase, its ideal mixing entropy is

$$
\begin{equation*}
S=-R \sum_{i=1}^{n} x_{i} \ln x_{i} \tag{8}
\end{equation*}
$$

To find the maximum of S, we write above equation as

$$
\begin{equation*}
S=-R \sum_{i=1}^{n} \ln x_{i}^{x_{i}}=-R \ln \prod_{i=1}^{n} x_{i}^{x_{i}} \tag{9}
\end{equation*}
$$

The mole fractions, $x_{i}(i=1,2, \cdots, n)$, are positive numbers. After replacing b_{i} in Eq.(7) by x_{i}, we have

$$
\begin{equation*}
x_{1}^{x_{1}} x_{2}^{x_{2}} \cdots x_{n}^{x_{n}} \geq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{x_{1}+x_{2}+\cdots+x_{n}} \tag{10}
\end{equation*}
$$

Since $x_{1}+x_{2}+\cdots+x_{n}=1$, Eq.(10) becomes

$$
\begin{equation*}
x_{1}^{x_{1}} x_{2}^{x_{2}} \cdots x_{n}^{x_{n}} \geq \frac{1}{n} \tag{11}
\end{equation*}
$$

and the equality satisfies when if and only if $x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{n}$. Combination of Eq.(9) and Eq.(11) gives

$$
\begin{equation*}
S=-R \ln \prod_{i=1}^{n} x_{i}^{x_{i}} \leq-R \ln \frac{1}{n} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
S \leq R \ln n \tag{13}
\end{equation*}
$$

Therefore, the maximum of ideal mixing entropy is reached when $x_{1}=x_{2}=$ $\cdots=x_{n}=\frac{1}{n}$ and its maximum value is $R \ln n$.

Reference

[1] Jiri Herman, Radan Kucera, Jaromir Simsa," Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory, translated by K. Dilcher, Springer, 2000.

