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1 Weighted Arithmetic Mean and Geometric Mean
Inequality

The weighted arithmetic mean and geometric mean inequality is given in the
following theorem [1].

Theorem Let the sum of the positive numbers w; (i = 1,2,--- ,n) be equal to 1.
Then for arbitrary positive numbers a; (i = 1,2,--- ,n) we have the inequality
w1 W2
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with equality if and only if a1 =az =--- = ay.
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Set b = — (i=1,2,---,n), Eq.(1) becomes
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we have
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Substituting Eqgs.(3) and (4) into Eq.(2), we obtain
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Switch both sides and raise both sides to the power by + by + - - - + b,,, we have
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We write the opposite inequality for the reciprocals for above inequality,
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and the equality holds if and only if by = by = --- = b,.

2 Ideal Mixing Entropy

For an n-component solution phase, its ideal mixing entropy is

S = —Rinlnxi (8)

=1

To find the maximum of S, we write above equation as

n n
S = —RZlnxfi = —Rlon;” 9)
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The mole fractions, x; (i = 1,2,--- ,n), are positive numbers. After replacing

b; in Eq.(7) by x;, we have
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Since 1 + 2 + -+ - + x, = 1, Eq.(10) becomes
1
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and the equality satisfies when if and only if z; = 29 = --- = z,, = —. Combi-
n
nation of Eq.(9) and Eq.(11) gives
= 1
S=-RInJ]a} < ~Rln (12)
i=1
or
S < Rlnn. (13)

Therefore, the maximum of ideal mixing entropy is reached when z; = x5 =

1 . . .
-+ =1, = — and its maximum value is Rlnn.
n
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